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Randomly modulated dark soliton 

V V Konotop and V E Vekslerchik 
Institute of Radiophysics and Electronics, UkrSSR Academy of Sciences, Academik 
Praskura street 12, Kharkov 310085, USSR 

Received 18 June 1990 

Abstraci. The er7ect o i  initiai fluctuations on the dynamics of dark soiitons is studied in 
the framework of the nonlinear Schr6dinger equation with non-zero boundary conditions. 
The perturbation method based on the inverse Scattering technique i s  developed to obtain 
statistical characteristics of soliton parameters. The possibility of creation of new solitons 
due to perturbation i s  considered and a criterion for that to occur i s  stated. The features 
of the soliton dynamics in comparison with those of bright solitons are discussed. 

1. Introduction 

In a series of recent experiments (Krokel er al. 1988, Weiner et a1 1988; see also 
Tomlinson 1988) carried out by different groups, dark optical pulses propagating in 
single-mode fibres with positive group velocity dispersion have been observed. Such 

of the order of 0.3 ps (Krokel et a/  1988) and 0.185 ps (Weiner et a/ 1988) while the 
background pulses were of the order of 100 and 4 ps correspondingly. It is well known 
(Hasegawa and Tappert 1973) that optical pulses of the above-mentioned durations 
are described by the nonlinear Schrodinger equation (NSE) or, more precisely, by the 
'stable' NSE (Zakharov and Shabat 1973). It allowed the existence of dark solitons (as 
!he s!ab!e dark pulses have been r?!!ed) to be predlckd zs long ago IS !97? ( H a s e g ~ w  
and Tappert 1973, Zakharov and Shabat 1973). The experimental progress stimulated 
theoretical investigations devoted to optical applications of the stable NSE (Gredeskul 
et a/ 1989, Kivshar 1990). The absence of a threshold for generation of dark solitons, 
experimentally observed by Krokel et a /  (1989), as well as criterion for the existence 
of dark solitons have been stated theoretically by Gredeskul and Kivshar (1989). 
Tomlinson and co-workers ( 1989aj b) have investigated numerically the influence of 
the finite width of background pulses on dark soliton stability and have stated that 
the dark pulse maintains its soliton characteristics as the background pulse evolves. 
Gredeskul et a1 (1989) have considered analytically evolution of pulses with various 
initial shapes including dark pulses on a finite width background (in the WKB approxi- 
mation) and random ones in the non-soliton case. In general, fluctuations are the 
attribute of all experiments. In particular, input fluctuations may lead to restrictions 
on the length of an optical fibre used for investigations of soliton properties (Krokel 
et a /  1988). 

Analogous problems arise in connection with bright soliton dynamics (i.e. at 
laser-beam wavelength from the region of the negative group velocity dispersion) and 
have been studied in a number of papers (Elgin 1985, Vysloukh et a1 1987, Bass er a/  
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1987, 1988, Konotop 1989). Briefly, the behaviour of a randomly modulated bright 
soliton is as follows. Initial amplitude and phase modulations change its parameters. 
If fluctuations are weak enough, the amplitude and velocity are distributed according 
to the Gaussian laws. Also, the random modulation raises optical noise in a fibre. 
Initially this noise is located in the soliton region. But during its propagation the soliton 
'clears' itself from the noise. Statistical characteristics of the noise are similar to those 
in the linear case (i.e. without solitons). 

The dynamics o i a  randomly moduiated dark soiiton have been numerically studied 
by Zhao and Bourkoff (1989). They stated the conditions needed for the initial pulse 
to decay into the prime and two small solitons and discussed the effect of both 
fluctuations and losses on the soliton dynamics. I n  particular, it was found that dark 
solitons are less affected by dissipation and background noise than bright ones. 

I n  the present paper we consider analytically the effect of initial random modulations 
on dark soiiion dynamics. Aii caicuiations are carried oui within the Framework of the 
NSE with non-zero boundary conditions at infinity, which corresponds to an endless 
background pulse. The mathematical statement of the problem as well as  a very brief 
review of some aspects of the inverse scattering technique (IST) are presented in section 
2. In section 3 we develop the perturbation theory for a modulated dark soliton based 
on the IsT. In section 4 we obtain statistical characteristics of soliton parameters for 
initial fluctuations of rather general form. There we also consider two limiting cases 
of small and large correlation radii of initial fluctuations and the case of a random 
phase modulation. The possibility of the creation of new solitons due to initial 
fluctuations is discussed in section 5, where we consider some particular cases, and in 
section 6, where a general approach to the problem is presented. The conclusion is 
devoted to discussion of the results obtained. 
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2. Mathematical remarks 

Optical pulse propagation in a single-mode optical fibre in the region of normal group 
velocity dispersion is described by the NSE (Hasegawa and Tappert 1973; see also 
T.....,:""?.- .̂ " I  InPo> "...-"tnA i" +ha fnrm 
l U l l l l l l l D U l l  L i  U8 "U7,. p n L " L " L c "  111 L l l r  L I Y Y . L I " L . Y I  B " I . 1 1  

Here q is the complex field envelope, normalized to make 1q1'= 1 correspond to an 
intensity of pulse equal io 10-7ncA,/16?m,z, W cm-*. The variable f is the coordinate 
along the fibre normalized onto 4z,/?r, while x is the retarded time in the frame of the 
carrier mode, normalized to the input pulse duration 1"; zo = (?rci,,)2/A,jlD(A~~)l, D ( h d  = 
A:,d2!f/dAi, A() is the carrier mode wavelength; n is the refractive index and n2 is 
Kerr's coefficient. 

The substitution q + q exp( -2ip2i) modifies (1) to 

lim q = p  lim q = p  exp(i8). (3) 
I - - =  v-+w 

Here p is a constant taken as  positive real and designates the background pulse 
amplitude, and 0 is a complete phaseshift. 
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It  is well known (Zakharov and  Shabat 1973) that the Cauchy problem for the N S E  

may be  solved exactly by means of the IST. The IST is well covered in numerous works, 
and thus we outline here, following Takhtajan and  Faddeev (1986), only the principal 
points of this method that will be used below. 

One  can associate a linear scattering problem, the so-called Zakharov-Shdbat 
system, with the NSE (no matter which of its forms we consider: equation ( I )  or (2)) 
such that the initial condition q ( x ) = q ( x ,  f =0)  forms the scattering potential 

d 
d x  - F ( x ;  A ) =  U ( x ;  A ) F ( x ;  A ) .  (4) 

Here F is a 2 x 2  matrix, 

A is a spectral parameter and the overbar denotes complex conjugation. 
By the known result (Zakharov and  Shabat 1973, Takhtajan and Faddeev 1986) 

the spectral problem (4) has the continuous spectrum R,  at real A :  A 2 >  w 2 ,  where w 
is defined as o = 2p. Also, (4) may have eigenvalues in the lacuna ( - W .  w )  constituting 
the discrete spectrum. 

The  so-called scattering data, which play an  important role in the IST, can be 
obtained from the scattering matrix T ( A )  linking the normalized solutions of (4): 

T Y x ;  A ) =  T+(x;  A)T(A). ( 6 )  

Matrix Jost functions T+(x;  A )  are defined by their asymptotics: 

T,(x; A )  - exp (9 O r 3 )  E ( x ;  A )  as x +  im. (7 )  

Here 

u 3 = d i a g ( l ,  -1) is a Pauli matrix, and parameters z and k are introduced according 
to the relations 

k ( A ) = m  s g n k = s g n  A ( A  E R , )  (9) 

z (A)=A + k ( A ) .  (IO) 
For A E R, the scattering matrix T ( A )  may be written in the form 

If  we consider a ( A )  as a function of z, defined by ( I O ) ,  the set of zeros of a ( A ( z ) )  
in the upper half-plane of complex z, 

z, = A n  + iu* ( n  = I , .  . . , N )  (12) 
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where 
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v . = m > o  (13) 
and N is the number of eigenvalues of the scattering problem, is in the one-to-one 
correspondence with the discrete spectrum of the scattering problem. 

Since for all n 

12.1 = 0 (14) 
the discrete spectrum may be characterized by the set of angles {O,,} defined by 

(see figure 1 and below). 
It follows from the analysis of analytical properties of the scattering matrix that 

This representation together with the asymptotics of a ( A )  for large A, 

a(A)=exp * - 0  +O(lAl-') (17) (3 
when *Im A > O ,  gives a relation which will be used below (the so-called &relation, 
Takhtajan and Faddeev 1986) 

The NSE as a completely integrable system possesses an infinite number of the 
conservation laws. Further, we shall make use of one of them which may be written 
in the form (Takhtajan and Faddeev 1986) 

where 

(20) 
J2[ql=z l m  /-mdx(q.xq-q&). 

The identity (19) may be considered as the law of conservation of momentum. 

-_ ?I . "-. .__~_~, 
(01 -W 0 A, W A 

i b l  

Figure I .  Spectrum of the scattering problem, soliton paramelers in terms of h ( a )  and 
z ( b ) .  Regions near the paints i w  are those where appearance of new Solitons can occur. 
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3. Perturbation theory 

The complete analytical solution of the Zakharov-Shabat system (4) may he done only 
for some particular cases. The most interesting of them is the refractionless, or multi- 
soliton, case: b ( A )  = 0. The one-soliton potential ( N  = 1) has the form 

Here the subscript for Y is omitted and the notation E = exp(i812) is introduced. The 
scattering matrix for this potential is T,(A) = diag(a,(h), a s ( A ) - ’ ) .  The Jost coefficient 

considered as a function of z,  has one zero 

z, = As+ i Y = -WE.  (23) 

The one-soliton Jost functions are presented in appendix A. 
In the generic case it is impossible to solve (4) exactly. But if the difference 

Gq(xj  = q i x ,  i = O ) - q J x )  (24) 

is sufficiently small, the perturbation theory may be developed. For the unstable NSE, 

such theories have been constructed by Elgin and Kaup (1982), Elgin (1985), Vysloukh 
et nl (19871, Bass et a1 (1987, 1988) and Konotop (1989). 

By analogy with the case of bright soliton dynamics, it is naturally expected that 
initial perturbations result in the changing of soliton parameters and the generation 
of quasilinear modes. Also, a new soliton or a pair of new solitons can be created (a  
fact that was not observed within the framework of the perturbation theory for bright 
soliton dynamics). The question of what occurs when the soliton number changes will 
be discussed below. 

The parameters of one of the solitons generated from the initial random pulse (it 
will be called ’prime’) are close to those of the unperturbed soliton. Its velocity A ,  and 
deep U ,  of the intensity hole relative to the background intensity may be written as 
follows 

(25) 
e, A,=-wcos-  
2 

( 2 6 )  . e, 
Y ,  = w 51n - 

2 

with 0, 8 (cf. (23)). The main subject of this section is the variation of the parameters 
of the prime soliton, S A ,  = A ,  - A >  and S u ,  = U ,  - U$, which may be expressed in terms 

S A ,  = f u s e ,  - f~~(ss , ) ’+o( (se , )~)  (27) 

U ,  = -:A,GO, -$u(S8,)’+0((SS,)’). (28) 

From the mathematical point of view, in situations when the perturbation method 
is applicable, the creation of new solitons is possible only near the edges of the 
continuous spectrum. Hence, the ‘newborn’ solitons, in case they exist, have small 

of se, = 8, - e :  
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amplitudes and large velocities: U,, = 0 and A n  = fw for n > 1. Their parameters may 
he written in a form similar to (25) and (26) with 

V V Konofop and V E Vekslerchik 

where 68, for n > 1, as well as SO,, are of the order of the initial perturbation S q .  
A small variation SU of the matrix U caused by Sy in (4) causes a variation of 

the scattering matrix, which to the first order in SU may he written as follows (Takhtajan 
and Faddeev 1986): 

m 

ST(A)=  T ; ' ( x ; A ) S U ( x ) T - ( x ;  A )  dx (30) 

where T, are unperturbed Jost functions, i.e. the Jost functions of the system (4) and 
( 5 )  with y = y. (see ( A l ) ) .  

I-=> 
Since 

matrices T;' and, hence, ST have singularities at A = fw. This is an exhibition of the 
fact that in the case of non-zero boundary conditions the points A =io are, in the 
generic case, the singular points of the scattering matrix: 

One can show (e.g. see Takhtajan and Faddeev 1986) that 'residues' a ,  and b, (which 
are residues indeed if we consider the scattering matrix as a function of z )  are related 
by the formula 

a ,  = i ib ,  (34) 
and that b ,  are real. 

a perturbed bright soliton) in spite of the fact that ST = 0 when SU = 0. 

consider the function C(A) defined by 

Thus we cannot consider ST as small when SU is small (as it was in the case of 

To take into account the above-mentioned singularities of the Jost coefficient a ( A )  

The quantity C(A) is regular for all A from R,,  and is small as far as Sy is small. One 
can show that to the lowest order in fluctuations C(A) is real for real A, It is presented 
in appendix B. 

Since the relations between A,, v, and Of, ( n  > 1) are similar to (25) and (26) ,  one 
can conclude that 

Iw'SB,, -lA,,lv,, = O((6y)') ( n > l ) .  (36) 

Then, by using (18) and (19) we obtain to the second order in S q :  
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where SJ,=JJy,+Sq]-J,[q,] and J , ( q )  is defined by (20). It can be shown that 

dA 
k ( A )  

dA k(A) ln la (A) /2=  - C 2 ( A ) + O ( ( S y ) ' )  

where C(A) is given by (35). A derivation of this relation is outlined in appendix C. 
Now, by iterating (37), one  can get, working to order (Sq),, the following expression 
for SO, : 

4. Statistical characteristics of dark soliton parameters 

In this section we obtain the statistical characteristics of the prime soliton parameters 
for two classes of initial perturbations which are usually used to describe fluctuations 
of real laser pulses. 

First consider the case of phase modulations: 

q(x, f = O )  = q , ( x )  e x p [ i d x ) l .  (40) 
Here q ( x )  is a real random process of zero mean value and  correlator 

'.2 

(q(x)rp(x'))=@(x-x')  = d t  6(5) exp i - (x-x ' )  . (41) 

Inserting (41) in both the definition of I, and expression for C(A) (B2) one can get 
I-_ [: 1 

Then, simple algebra invoking the direct averaging of (39) and evaluating the 
integral over R, in (39) yields the mean value of 88, : 

Together with (39) it also gives 

where 

The sdbscript 'ph' is added to indicate phase fluctuation. 
I n  the case of sufficiently weak Gaussian initial fluctuations the random quantity 

S O , ,  and therefore F A ,  and Su,  (see (27) and (2811, may be regarded as distributed 
according to the normal law. Then formulae (43)-(45) completely describe the statistics 
of 60, , and hence, together with (27) and (28), statistics of the additional parameters 
S A ,  and S u , .  So, the mean values o f  the shifts of  velocity and amplitude due to phase 
modulation (40) may be written as 
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Let us obtain the statistical characteristics of a dark soliton generated from an 

6 0 )  = dX)$(X) .  (48) 
Here g(x)  is a regular function vanishing at infinity and $(x) is a random process 
with zero mean value and correlators 

initial random pulse of the form q ( x ,  f = 0) = q,(x)+Sq(x) with 

l & I v ) J , l v ' ) \ -  \ Y \ - I Y \ - , , - - \ -  A l v - v , > -  * I -  c" A t ~ l c ~ a . . . . ( : ~ / - p . . f l \  U b - \ b l b * p  1 (49) 

($(x)$(x'))= B(x-x ' )  = dgfi(g)  exp i - (x-x ' )  . (50) 

Note that such a choice of S q  is natural. Thus, in the experiments by Krokel er al 
(1988) the 'ultrafast light-controlled optical fibre modulator' has been used. The work 
of this device is based on the interaction of a long signal pulse with a driving one 
(Halas er a1 1987). Then the additional parameter Sq may be considered as a random 
modulation of the driving pulse. 

Below, for the sake of simplicity, we use the traditional form of a laser signal 
envelope: 

1 -m \ 2'*-*! )  
m I-, (: 

iix 
g(x) = sech -_ (51) 2 

For S q  given by (48) and (51), uncomplicated but rather cumbersome calculations 
give 

( ( S J J 2 )  = $ j-: dg 6 ( 5 ) ( g 2 +  v2)2 sech' 
2v 

where 

6 ( g ) =  Re(e-'"a(()+fi($")) 

T 2  715 Y ( 5 )  = 7 (g'+ v2) sech'- 
2v 2v 

(57) 
=:A, 9 Z(5) = - (g'+ U')( f 2  - 7 v 2 )  sech- -. 16v' 2 u  

Formulae (52)-(57) may be combined to give (SO,) and To make the results 
obtained apparent we shall deal further with two limiting cases where the general 
formulae may be essentially simplified. 

!f 2 s c z ! ~  of ficctui!ions R (er, ir! g h p r  words, a oxrelation radius) is much less 
than the dark soliton width, R << U-', it is natural to make a use of the delta-correlated 
random process approximation. Correspondingly, assume 



Randomly modulated dark soliton 775 

Then, formulae (52)-(57) together with (27) and (28) give 

{ S A  ) - - 3  , ”- 2 ~ s ~ :  

{ S u , ) , =  .[ (:)2 -:I 
where 

Similar results may be obtained in the opposite limiting case, 

which corresponds to fluctuations with large correlation radius (R >> U-’). In this case 

(SA,) ,= -3A,A; (63) 

with 

As for the dispersion of the soliton parameters, the corresponding formulae for all 
the cases considered above (initial phase fluctuations (40); delta-correlated fluctuations 
(58) and large-scale initial amplitude modulations (62)) can be unified as follows: 

( ( S A , ) ’ ) =  .’Az (66) 

((sv,)’)= A : A ~  (67) 

where A is either A p h r  A<, or A-. 
Let us discuss the physical consequences of the results obtained. Since all A 2  are 

positive, formulae (46), (59) and (63) imply that the average velocity of a dark soliton 
increases under initial phase modulations and decreases i n  the case of amplitude 
perturbations. Mean velocity is not changed if  its unperturbed value is equal to zero, 
i.e. a rest soliton remains at rest in all the cases considered above. The dispersion of 
velocity fluctuations (see (66)) rises under the modulations of both types. The depen- 
dence of the average amplitude of a dark soliton on the initial conditions is more 
complicated. If phase fluctuations result in the decreasing of the mean deepness against 
a background carrier wave, the effect of amplitude fluctuations depends on the correla- 
tion radius and parameters of the unperturbed soliton. I t  can be seen from (60) and 
(64) that there is a critical velocity A, which depends on the correlation radius R,  such 
that initial amplitude fluctuations do not change (on average) the soliton amplitude 
if i t  corresponds to the eigenvalues A ,  = * A c :  (~Sv,)l,,~=+~, = 0. So,  for delta-correlated 
fluctuations A,( R = 0) = U / &  and for large correlation radii A,(R = m ) = ~ / & .  Then, 
from (60) and (64), a slow soliton ( IA,l  < A , )  becomes more shallow, while a fast one 
( \ A s \ >  A,) becomes more deep. 
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I n  the case of a phase-modulated soliton the value of the correlation radius manifests 
itself only quantitatively, in the strength of fluctuations of soliton parameters. Ampli- 
tudes of the additional parameters (SA,) and (Sv,) as well as dispersions of the soliton 
parameter fluctuations reach their maxima as R -f 0 and vanish as R -f CO (it is assumed 
that the correlation function is correspondingly normalized). 

The effect of initial amplitude perturbations essentially depends on the phase a as 
well. In  particular, fluctuations and shifts of the prime soliton parameters decrease to 

contrast; when a = O  they are phase coherent. 
In conclusion of this section we consider an important dependence of our results 

on the unperturbed soliton amplitude U .  If Y + 0 (A, + * w )  all mean values go to infinity 
in the case of amplitude noise (48) and to a non-zero value in the case of phase 
fluctuations. Mathematically it is stipulated by the singularities at the edges of the 
continuous spectrum (they have been discussed in the previous sections). It means 
that the developed perturbation theory fails near the points * w (which corresponds 
to ‘relativistic’ dark solitons). To specify this region and, hence, to give estimates for 
the perturbation theory to be valid, we require 

te ru  -with a changing f?Uii., 0 iu +-;2. if = =/2, bO;’n soiiion and noise are 

in the limit w + O  ( A % + i w ) .  This condition provides (in the statistical meaning) the 
location of the perturbed root A ,  inside the interval ( - w ,  w ) .  The constant in (68) is 
of order one and has to be determined in each case separately. If the requirement ( 6 8 )  
fails, the results for mean values are non-physical. In any case, small and fast dark 
solitons are strongly affected by the initial noise. 

5. On the creation of new solitons: particular examples 

The problems of the generation and disappearance of the bright solitons resulting from 
the noise have been discussed in the literature (e.g. see Kandidov and Schlyonov 1984, 

modulated bright soliton one can neglect the possibility of a new soliton arising (as 
well as the initial one being destroyed). A simple explanation of this fact may be given 
as follows. It is apparent that a ‘newborn’ soliton is of small amplitude if the initial 
perturbation is small enough. This implies that the corresponding zero of the Jost 
coefficient Anew(a(AncW)=O) is located near the real axis (the amplitude of a bright 
soliton is proportional to the imaginary part of the corresponding eigenvalue of the 
scattering problem). On the other hand the Jost coefficient a ( A )  in the case under 
consideration may be written as a ( A ) =  a , ( A ) + S a ( A ) ,  where a, is the ‘one-bright- 
soliton’ Jost coefficient and an additional parameter So is due to initial fluctuations. 
For real A la\(A)l= 1, hence near the real axis I q ( A ) [ * I .  That is why ISa(A,,,)( has 
to be close to unity. As is known, the probability for small fluctuations to make Sa to 
be of order one is exponentially small. Hence the possibility of creation of a new 
soliton may be neglected as long as the amplitude of the initial one is much more than 
the fluctuations. 

The situation is different in the dark soliton case. Representation (35) shows that 
in spite of the smallness of C ( h ) ,  which is of the order of fluctuations, the additional 
parameter Sa takes all values because of the factor k(A)-’. Thus we have to take into 

... Elyuiin ai iggg, i(onoiop iggg), ~ o w e v e i ,  cunsi&iing ihe dynamics of an initia;iy 
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account the possibility of new eigenvalues appearing near the singular points *W. Note 
that eigenvalues close to *UJ correspond to solitons of small amplitudes. In this region 
a pair of solitons is horn from a pure stochastic pulse against a non-soliton background 
(Credeskul and Kivshar 1989). 

We cannot give an exhaustive answer t o  the question of how many dark solitons 
will be created due to an initial perturbation 6q. But analysis presented in  this section 
provides some insight into the problem. 

First, consider the case when the unperturbed soliton is the rest one: 

q,,(x) = - f w  tanh(fwx) (69) 

i.e. the dark pulse given by (21 )  with 0 being taken equal to (such a soliton is also 
called a black soliton in contrast to a grey one at 0 # v ) .  Using the presentation (35) 
together with (62) and ( B 3 )  the Jost coefficient a ( A )  may be written to first order in 
6q as 

where 

Note that A = 0 (a , (O) =0)  is no longer a root of the dispersion relation a(.\) =0, since 
the second term in brackets in the RHS of (70) diverges as A -0. Equating a ( A )  with 
zero one can obtain the equation for the discrete spectrum of the scattering problem 

A-+2(oAi+AA,) = 0. (72) 

It can be shown that this equation has an even number of roots i f  lAil>lA,l and 

As the first example consider the creation of an additional soliton caused by a 
an odd number if lA;l< lArl. Now we illustrate this fact by two examples. 

weak initial phase modulation of the black soliton, i.e. the case when 

q(x, = O )  = q&) exp(iip(x)) (73) 

where ip is small, and q(*m) = 0. By solving (72) with A r  = 0 and 

(the prime denotes differentiation with respect to x) it is easy to show that there are 
two eigenvalues: A ,  = -2A; ,  A 2 =  - (w  -2cY’A; )  sgnAi .  In other words, two solitons 
will be created from the initial packet given by (73): the prime one with ‘amplitude’ 
U, = w - 2 w - ‘ A ’  and a more fast additional one with u,=2 /Ai l  (see figure 2). Both 
solitons move in  the same direction. 

This situation differs essentially from the bright soliton case, when phase modula- 
tions lead to the decreasing of the soliton amplitude only (Konotop 19891, and is a 
manifestation of the ‘phase nature’ of dark solitons. 

As another example consider the case of antisymmetric perturbations, 

Sq(x)= -Sq(-x). (75) 
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Figure 2. Schematic evolution o i  B perturbed hlack soliton in the ease of an inithl phase 
modulation. 

In this case A , = O ,  and it is clear that (72) has a solution A , = O  (antisymmetric 
fluctuations have no effect on the black soliton). As for the additional solitons, there 

eigenvalues 
wi!! he a pair of them i f  ai < 0; They correspond to the pair of symmetrically situated 

(76) 

(cf. results obtained by Gredeskul and Kivshar (1989)). Being of small amplitudes 
v 2 =  v,=21Arl these solitons will propagate with equal (in modulus) velocities in 
opposite ~~ directions (see figure 3). 

As was mentioned in the introduction, Zhao and Bourkoff (1989) have considered 
the evolution of the packet, which in our notation may be written in the form 

A I =  - A ,  = w - 2 K ' A :  

q(x, t=O)=-$wtanh(fnx) .  (77) 

When is close to w this case may be treated as the case of an antisymmetrically 
perturbed dark soliton. Our criterion for the creation of a new pair of solitons (A, < 01, 

Figure3. Schematic e v o l ~ l i o n  o i a  perturbed black soliton in the case o i a n  anlisymmelric 
initial oemurbation. 
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which may be rewritten now as Cl < w, is consistent with the exact results by Zhao and 
Bourkoff. The scattering problem (4) with potential (77)  can be solved exactly for 
arbitrary fl and w. The solution is presented in appendix D. 

6. On the creation of new solitons: general remarks 

inc  SLIISIIUII U V L ~ ~ X ~ C U  in ~ n c  prcviuus s c c ~ ~ u n  nar a rpccirrc rurm. LYOW w c  uciivc 2 
general relation allowing remarks about the soliton number to be made. To this end 
we rewrite the presentation (16) in the form 

T L ^  -.:.--:-.. -L.-:-.> , LL- :.~~. ... _:._ L.. . .-.. :c. c .._. I, A--:..- 

exp( -iIo-iI(A)) 

(here the unitarity of the scattering matrix (11) was used). Further analysis is based 
on the treatment of the integral I ( A )  near its singular points A = +w, by analogy with 
the derivation of the so-called signum rule by Takhtajan and Faddeev (1986). Hereafter 
the variable A is taken from the upper half-plane: Im A > 0. 

It can be shown that when A is close to i w ,  

I ( A = + o ) = - l n  : ’ ( 1+- kf(i,) T ? + O ( k ( A ) )  
2 2 

where the logarithm branch is determined by the condition ln(1) =O.  This gives 

exp(- i I (A)) - i  ( A  = * U )  (82) 

with the root branch defined by (1)”2 = 1 
Noting that for Im A > 0 

while Im k ( A ) - ’ < O  one can get 

By using (78) ,  (82) and (84) together with definition (32)  one can show that 

a+=idlb.+l ( 8 5 )  

(86) a-=iijb-l(-)  x , .  

where the real constant d is given by 



780 V V Konorop and V E Vekslerchik 

Multiplication of (85) and (86) leads to the relation 

a. ,a_= ( - )N"i21b+b-l  

which gives the identity 
( - ) N  =-sgna+a_ 

where N is the number of solitons and the 'residues' a, are defined by (32). The 
formula obtained is a universal one: it is valid for all initial conditions from the 
ciass (3). 

Our further consideration is based on using formula (89) which may be rewritten 
in terms of C(A) (see (35)): 

( - ) N  = -sgn c ( - w ) C ( w ) .  (90) 
In the case of weak initial fluctuations one can use the assumption that 

sgn C (  --w jC( w j = sgn( C (  - w j C (  w j) (4; j 

C ( h ) C ( A ' )  = ( C ( A ) C ( A ' ) ) + O ( ( S q ) 3 ) .  (92) 
First consider the case of a random phase modulation of the dark soliton (not only 

(93) 

which is made on the grounds that for all A, A '  

for the black one): 

d x ,  f =O) = qdx )  e x p ( i 4 x ) )  
where p is a real random process defined by (41). 

It can be shown after straightforward algebra that 
2 

(94) 
(C(-w)C(w)) , ,=  -(E) I - l d g  &(g)c" cosech--<O. 1 7rc 

2 v  

Hence the one-soliton solution of the NSE under the boundary conditions (3) is 
'unstable' under the phase modulation in the sense that any initial perturbation of the 
type (93) leads to the creation of the second soliton, at least. 

Next, return to the case of the delta-correlated initial fluctuations (48)-(50) and 
(58) considered in section 4. Evaluation of the correlator from the R H S  of (91) gives 

2 2  8w U" 

5 u  
(C(--wjC(-wj)o=- ( 4 t c o s  6 -cos ia t 6 cos 6 cos i a j .  (45) 

By using this result, relation (91) may be written as 

with y = & .  The constant y is determined by how quickly Sq decreases at infinity. In 
particular, for a perturbation of the form 

S q ( x ) =  (coshy)- '"$(x) (97) 

with $ given by (48), parameter y depends on m: 
f m f m - c l )  \ ="I - ( "."" ' . 

m + 2 ) ( m + 3 ) )  

( y  = 

ations. This dependence is illustrated by figure 4. 

corresponds to m = 1). 
Relation (96) shows that the parity of N depends on the 'polarization' of fluctu- 
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Figure 4. Dependence of the soliton number parity on the amplitude of the unperturbed 
soliton Y and 'polariration' of the delta-correlated fluctuations a. 

Considering the case of fluctuations of large correlation radius one can get from 
(92) and (B3)  together with (48)-(50) a n d  ( 6 2 )  that 

(C(-w)C(o)) ,= (umcos  a ) ' w + w -  (99) 

where 

Evaluating the integral in (100) leads to the result 

Hence the number of solitons is even if Ih,l <+W.  

Conclusion 

In conclusion we summarize the main points that distinguish the dynamics of a dark 
soliton from the dynamics of a bright one. These differences have as a beginning, from 
the mathematical point of view, two features of the scattering problem corresponding 
to the NSE with non-zero boundary conditions: the eigenvalues of the scattering problem 
are real, and the scattering data have, in general, singularities at * W .  

Since the discrete spectrum is real, a dark soliton is one-parametrical, while a bright 
one  is two-parametrical. That is why it was convenient to develop the penurbatibn 
theory for the variations 80, rather than for SA,, Su, directly. As a result a perturbation 
changes simultaneously both velocity and  amplitude of a dark soliton, while i n  the 
bright soliton case the phase fluctuations do not result in fluctuations of amplitude 
a n d  initial amplitude modulations d o  not affect velocity. 

The main consequence of the fact that the scattering data are, in  general, singular 
is the possibility of the creation of new solitons due to small perturbations. Though 
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this effect is of not much importance from the point of view of applications (since 
amplitudes of 'newborn' solitons are as small as noise generated in a system), it is, in 
our opinion, very interesting in its own right and is the main feature distinguishing 
dark soliton dynamics from bright soliton dynamics. 

It turns out that pure soliton solutions (i.e. solutions without a quasilinear con- 
stituent) are unstable: the number of solitons can be changed by a vanishingly small 
perturbation of many types. The physical origin of this phenomenon is the fact that 

energy of the background alone). The mathematical explanation of this instability can 
be given as  follows. The pure soliton case, when singularities are absent, is exceptional: 
l a , ( i w ) l =  1, a ,  = O  (residues ab are defined by (32 ) ) .  A perturbation, even if small, 
'returns' us to the general case (a+ # 0). In this sense a quasilinear constituent may 
play a stabilizing role, since its presence implies a ,  # 0. So, if the 'unperturbed initial 
cnzdi!inc is cot !he p-:e sn!i!nz =-e (ni f e), a sma!! initia! pe;ti;:bation leads io a 
small change of a,:  ah+ a,+Sa,,  which is not crucial provided that unperturbed 
values of a ,  are non-zero. 

V V Konotop and V E Vekslerchik 

ci&on of so;kons is  eneige;ica;;y pioka::e (efieigy of dark so;iion is less 
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Appendix A 

One of the one-soliton Jost functions can be written as follows 
w&q"+ 2 

. 0 w + zEq, 

, w w + z&q" 

wEqq,f z 
z w + z e  

T_(x; A )  = ( A I )  

W E + Z  

where qo = q./p. k ( A )  and z(A) are defined by (9) and (lo), correspondingly. The other 
Jost function may be obtained from (A l )  by using the relation 

( A 2 )  T+(x; A )  = T_(x; A ) T : ' ( A )  

where T,(A)=diag(a,(h), ri,(h)) with a , (A)  given by ( 2 2 ) .  

Appendix B 

It follows from (30) that 

-where P'' is zn ?!emen! of mz!rix T- (which is in the ith row an? j t h  co!xmn!. 

by (35): 
Equation ( B l )  together with ( A I )  and ( 2 1 )  gives an expression for C ( h )  defined 

dx6q(x)w(x;  A )  (B2)  
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where function w is given by 

w 2 - ~ ~ ,  
eyS + E + 2 

w ( A  - A 7 )  

W 
w(x; A )  = 

8 cosh2(ux/2) 

Appendix C 

Consider the integral in the RHS of (37), 

When A is not close to f w ,  the logarithm may be expanded as a Taylor series 
(In( l+Cik- ')  = Cik-'+. . . ). This expansion fails near the edges of the continuous 
spectrum since k(*w) = O .  Nevertheless it  can be shown that 

To prove the last relation consider the difference 

which can be written as 

9 = H (  C ( o ) ) - H (  C ( - w ) ) +  9+- 9 

where 

H (  C )  =A T W  1; dA[ k(A) In (1 +&) -&] 
and 

It can be shown that for small C 

H ( C ) = - -  - +O(C4). 
3 w  Y C Y  

As for the terms 9, in (C4), they may be written as follows: 

C ' ( * A ) - C 2 ( * w )  
(C8) 

k2(A 1 
9*=- 

where only the lowest-order terms are retained. 
Noting that C(A) is a meromorphic (in terms of A )  function, which implies that 

when A z f w ,  one can conclude that the integral in  (C8) converges and is of order 
( S q ) 4  (C(A) is of order S q ) .  This proves relation (C2). 
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Appendix D 

Consider matrix F ( x ;  A )  defined by 

V V Konotop and V E Vekslerchik 

F ( x ;  A )  = E - ' ( x ;  A ) T _ ( x ;  A ) ,  

This matrix solves the equation 

under condition F(-oo, A) = 11 (2  x 2 unit matrix). Equation (D2) can be transformed 
into a second order differential equation which turns out to be of the hypergeometric 
type in terms of the variable 

~ = f [ l  +tanh(iflx)]. (D3) 

So, one can get 

The Jost coefficient a ( A )  of the scattering problem with qs0 as a potential can be 
written as 

ik r2 (k) 
I - i n  

a ( A ) = -  A (k+im)r(%) 

The discrete spectrum of the problem is given by 

A , = O  (D6) 

A,, = - A Z n + ,  =e (D7) ( n  = 1, . . . , No)  

where 

U. = o - n f l  (D8) 

and No is the largest integer satisfying the condition 

w 
No<--. fl 

The number of eigenvalues, i.e. the number of solitons, is 

N = 2N0 + 1. (D10) 

Results (D6)-(D10) have been stated by Zhao and Bourkoff (1989). 

References 

Bars F G, Kivrhar Yu S, Konatop V V and Puzenko S A 1987 Proc. 8rh In!. School on Coherenr Oplics parr 

- 1988 Opr. Commun. 68 385 
Elgin J N 1985 Php. Lerr. IlOA 441 

2 (Bratislava) p341 



Randomly modulated dark soliton 785 

Elgin J N and Kaup D J 1982 Opt. Commun. 43 233 
Elyulin S E, Maimistov A and Manykin E 1988 Phys. Lett. 132A 25 
Gredeskul S A and Kivshar Yu S 1989 Phyr. Reu. Lerr. 62 977 
Gredeskul S A, Kivshar Yu S and Yanovskaya M V 1990 Phys. Rev. A 41 3994 
Habas N J, Krokel D and Grischkowsky D 1987 Appl,  Phys. Lerr 50 886 
Hasegawa A a n d  Tappen F 1973 Appl. Phyx Lett. 23 171 
Kandidov V P Shlyonov S A 1984 lm Vumu Rodiofiiika, 27 1158 (in Russian) 
Kivshar Yu S I990 Phys. Reo. A 42 
Konotop V V I989 Kuant-Elektron. 16 1032 (1989 Sou. I ,  Quantum Electron. 19 669) 
KrBkel D, Halas N J, Giuliani G and Grischkawsky D 1988 Phys Re". Lett. 60 29 
Takhtajan L Aand Faddeev L D 1986 Hamiltonian Approach in  Soliton Theory (Moscow: Nauka) (in Russian) 
Tomlinson W J 1988 Phys. Stat. Sol. 150 851 
Tomlinson W I,  Hawkins R J, Weiner A M, Hcrilage J P and Thurston R N 1989a J. Opt. Soc. Am.  R 6 329 
Tamlinsan W J, Stolen R H,  Hawkins R J and Weiner A M 1989b Nonlinear Guided-Wam Phenomena: 

Vysloukh V A, lvanov I V and Cherednik A V 1987 lm Vuzou, Rodiofiiika 30 980 (in Russian) 
Weiner A M, Heritage J P, Hawkins R J, Thurston R N, Kirschner E M, Leaird D E and Tomlinson W J 

Zakharav V E and Shabat A R 1973 Zh Eksp. Teor. Fir. 64 1627 (Sou. Phjjs. JETP 37 823) 
Zhaa W and Rourkaff E 1989 Opl. Lett. 14 703 

Phys. Applic. 2 132 

1988 Phys. Re". Lett. 61 2445 


